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Abstract— Data clustering is the process of identifying natural 
groupings or clusters within multidimensional data based on some 
similarity measure. Clustering is a fundamental process in many 
different disciplines. Hence, researchers from different fields are 
actively working on the clustering problem. This paper provides an 
overview of the different representative clustering methods. In 
addition, several clustering validations indices are shown. Furthermore, 
approaches to automatically determine the number of clusters are 
presented. Finally, application of different heuristic approaches to the 
clustering problem is also investigated.    

Keywords: Clustering; Clustering Validation; Hard Clustering; Fuzzy 
Clustering; Unsupervised Learning 

1. Introduction 
Data clustering is the process of identifying natural groupings or clusters within 

multidimensional data based on some similarity measure (e.g. Euclidean distance) 
[Jain et al. 1999; Jain et al. 2000]. It is an important process in pattern recognition and 
machine learning [Hamerly and Elkan 2002]. Furthermore, data clustering is a central 
process in Artificial Intelligence (AI) [Hamerly 2003]. Clustering algorithms are used 
in many applications, such as image segmentation [Coleman and Andrews 1979; Jain 
and Dubes 1988; Turi 2001], vector and color image quantization [Kaukoranta et al. 
1998; Baek et al. 1998; Xiang 1997], data mining [Judd et al. 1998], compression 
[Abbas and Fahmy 1994], machine learning [Carpineto and Romano 1996], etc. A 
cluster is usually identified by a cluster center (or centroid) [Lee and Antonsson 
2000]. Data clustering is a difficult problem in unsupervised pattern recognition as the 
clusters in data may have different shapes and sizes [Jain et al. 2000]. 

Due to the prohibitive amount of research conducted in the area of clustering, a 
survey paper investigating the state-of-the-art clustering methods is generally 
welcomed. Hence, the purpose of this paper is to provide such an overview of 
representative clustering methods. However, trying to address all the clustering 



methods on one paper is not possible. Therefore, this paper tries to provide the reader 
with an overview of a set of representative clustering methods.  

The reminder of this paper is organized as follows: Section 2 provides a 
background material. Section 3 surveys different clustering techniques. Several 
clustering validation techniques are presented in Section 4. Methods for determining 
the number of clusters in a data set are given in Section 5. Section 6 provides a brief 
introduction to the use of Self-Organizing Maps for clustering. Clustering using 
stochastic techniques is investigated in Section 7. Finally, Section 8 concludes the 
paper. 

2. Backgrounds 
This section defines the terms used throughout the paper and it provides the reader 

with the necessary background material to follow-up the discussion in the paper. 

2.1. Definitions 

The following terms are used in this paper: 
• A pattern (or feature vector), z, is a single object or data point used by the 

clustering algorithm [Jain et al. 1999]. 
• A feature (or attribute) is an individual component of a pattern [Jain et al. 

1999]. 
• A cluster is a set of similar patterns, and patterns from different clusters 

are not similar [Everitt 1974]. 
• Hard (or Crisp) clustering algorithms assign each pattern to one and only 

one cluster. 
• Fuzzy clustering algorithms assign each pattern to each cluster with some 

degree of membership. 
• A distance measure is a metric used to evaluate the similarity of patterns 

[Jain et al. 1999]. 

The clustering problem can be formally defined as follows (Veenman et al. 2003): 

Given a data set }{ 21 pNp ,,,,, zzzzZ KK=  where zp is a pattern in the Nd-
dimensional feature space, and Np is the number of patterns in Z,  then the clustering 
of Z is the partitioning of Z into K clusters {C1, C2,…,CK} satisfying the following 
conditions: 

• Each pattern should be assigned to a cluster, i.e. 
ZC =∪ = k

K
k 1  

• Each cluster has at least one pattern assigned to it, i.e. 
K,,kk K1   , =≠ φC  

• Each pattern is assigned to one and only one cluster (in case of hard 
clustering only), i.e. 

kkkkkk ≠=∩     whereφCC  



2.2. Similarity Measures 

As previously mentioned, clustering is the process of identifying natural 
groupings or clusters within multidimensional data based on some similarity measure. 
Hence, similarity measures are fundamental components in most clustering algorithms 
[Jain et al. 1999].  

The most popular way to evaluate a similarity measure is the use of distance 
measures. The most widely used distance measure is the Euclidean distance defined 
as 
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Euclidean distance is a special case (when α = 2) of the Minkowski metric [Jain et al. 
1999] defined as 
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When α = 1, the measure is referred to as the Manhattan distance [Hamerly 2003]. 

Clustering data of high dimensionality using the Minkowski metric is usually not 
efficient because the distance between the patterns increases with increase in 
dimensionality. Hence, the concepts of near and far become weaker [Hamerly 2003]. 
Furthermore, for the Minkowski metric, the largest-scaled feature tends to dominate 
the other features. This can be solved by normalizing the features to a common range 
[Jain et al. 1999]. One way to do this is by using the cosine distance (or vector dot 
product) which is the sum of the product of each component from two vectors defined 
as 
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where >< wu ,zz  ∈ [-1,1].  

The cosine distance is actually not a distance but rather a similarity metric. In 
other words, the cosine distance measures the difference in the angle between two 
vectors not the difference in the magnitude between two vectors. The cosine distance 
is suitable for clustering data of high dimensionality [Hamerly 2003]. 

Another distance measure is the Mahalanobis distance defined as 

T1
M )()()( wuwuwu ,d zzzzzz −Σ−= −              (4) 

where Σ is the covariance matrix of the patterns. The Mahalanobis distance gives 
different features different weights based on their variances and pairwise linear 
correlations. Thus, this metric implicitly assumes that the densities of the classes are 
multivariate Gaussian [Jain et al. 1999]. 



3. Clustering Techniques 
Most clustering algorithms are based on two popular techniques known as 

hierarchical and partitional clustering [Frigui and Krishnapuram 1999; Leung et al. 
2000]. In the following, an overview of both techniques is presented with an elaborate 
discussion of popular hierarchical and partitional clustering algorithms. 

3.1. Hierarchical Clustering Techniques 

Algorithms in this category generate a cluster tree (or dendrogram) by using 
heuristic splitting or merging techniques [Hamerly 2003]. A cluster tree is defined as 
"a tree showing a sequence of clustering with each clustering being a partition of the 
data set" [Leung et al. 2000]. Algorithms that use splitting to generate the cluster tree 
are called divisive. On the other hand, the more popular algorithms that use merging 
to generate the cluster tree are called agglomerative. Divisive hierarchical algorithms 
start with all the patterns assigned to a single cluster. Then, splitting is applied to a 
cluster in each stage until each cluster consists of one pattern. Contrary to divisive 
hierarchical algorithms, agglomerative hierarchical algorithms start with each pattern 
assigned to one cluster. Then, the two most similar clusters are merged together. This 
step is repeated until all the patterns are assigned to a single cluster [Turi 2001]. 
Several agglomerative hierarchical algorithms were proposed in the literature which 
differ in the way that the two most similar clusters are calculated. The two most 
popular agglomerative hierarchical algorithms are the single link [Sneath and Sokal 
1973] and complete link [Anderberg 1973] algorithms. Single link algorithms merge 
the clusters whose distance between their closest patterns is the smallest. Complete 
link algorithms, on the other hand, merge the clusters whose distance between their 
most distant patterns is the smallest [Turi 2001]. In general, complete link algorithms 
generate compact clusters while single link algorithms generate elongated clusters. 
Thus, complete link algorithms are generally more useful than single link algorithms 
[Jain et al. 1999]. Another less popular agglomerative hierarchical algorithm is the 
centroid method [Anderberg 1973]. The centroid algorithm merges the clusters whose 
distance between their centroids is the smallest. One disadvantage of the centroid 
algorithm is that the characteristic of a very small cluster is lost when merged with a 
very large cluster [Turi 2001]. More details about traditional hierarchical clustering 
techniques can be found in Everitt [1974]. 

 Recently, a hierarchical clustering approach to simulate the human visual 
system by modeling the blurring effect of lateral retinal interconnections based on 
scale space theory has been proposed by Leung et al. [2000]. The following paragraph 
provides the reader with a good idea about this approach as described by Leung et al. 
[2000]:  

"In this approach, a data set is considered as an image with each light 
point located at a datum position. As we blur this image, smaller light 
blobs merge into larger ones until the whole image becomes one light 
blob at a low level of resolution. By identifying each blob with a 
cluster, the blurring process generates a family of clustering along the 
hierarchy." 

According to Leung et al. [2000], this approach has several advantages, including: 
• it is not sensitive to initialization, 



• it is robust in the presence of noise in the data set, and 
• it generates clustering that is similar to that perceived by human eyes. 

In general, hierarchical clustering techniques have the following advantages 
[Frigui and Krishnapuram 1999]: 

• the number of clusters need not to be specified a priori, and 
• they are independent of the initial conditions.  

However, hierarchical clustering techniques generally suffer from the following 
drawbacks:  

• They are computationally expensive (time complexity is )logO( 2
pp NN  

and space complexity is )O( 2
pN [Turi 2001]). Hence, they are not suitable 

for very large data sets.  
• They are static, i.e. patterns assigned to a cluster cannot move to another 

cluster. 
• They may fail to separate overlapping clusters due to a lack of information 

about the global shape or size of the clusters.  

3.2. Partitional Clustering Techniques 

Partitional clustering algorithms divide the data set into a specified number of 
clusters. These algorithms try to minimize certain criteria (e.g. a square error 
function) and can therefore be treated as optimization problems. However, these 
optimization problems are generally NP-hard and combinatorial [Leung et al. 2000]. 
The advantages of hierarchical algorithms are the disadvantages of the partitional 
algorithms and vice versa. Because of their advantages, partitional clustering 
techniques are more popular than hierarchical techniques in pattern recognition [Jain 
et al. 2000], hence, this paper concentrates on partitional techniques. 

  Partitional clustering algorithms are generally iterative algorithms that 
converge to local optima [Hamerly and Elkan 2002]. Employing the general form of 
iterative clustering used by Hamerly and Elkan [2002], the steps of an iterative 
clustering algorithm are:  

1. Randomly initialize the K cluster centroids 
2. Repeat 

o  For each pattern, zp, in the data set do 
Compute its membership ) |( pku zm  to each centroid mk and its 
weight w(zp) 

  endloop 
 
o Recalculate the K cluster centroids, using  
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until a stopping criterion is satisfied. 



In the above algorithm, ) |( pku zm  is the membership function which quantifies 
the membership of pattern zp to cluster k. The membership function, ) |( pku zm , must 
satisfy the following constraints: 

• ) |( pku zm  ≥ 0,  p = 1,…, Np and k = 1,…, K 

• 1) |(
1

=∑
=

K

k
pku zm ,  p = 1,…, Np 

Crisp clustering algorithms use a hard membership function (i.e. 
) |( pku zm ∈{0,1}), while fuzzy clustering algorithms use a soft member function (i.e. 
) |( pku zm ∈[0,1]) [Hamerly and Elkan 2002]. 

The weight function, w(zp), in Eq. (5) defines how much influence pattern zp has 
in recomputing the centroids in the next iteration, where 0)( >pw z  [Hamerly and 
Elkan 2002]. The weight function was proposed by Zhang [2000]. 

Different stopping criteria can be used in an iterative clustering algorithm, for 
example: 

• stop when the change in centroid values are smaller than a user-specified 
value, 

• stop when the quantization error is small enough, or 
• stop when a maximum number of iterations has been exceeded. 

In the following, popular iterative clustering algorithms are described by defining 
the membership and weight functions in Eq. (5). 

3.2.1. The K-means Algorithm 

The most widely used partitional algorithm is the iterative K-means approach 
[Forgy 1965]. The objective function that the K-means optimizes is 
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Hence, the K-means algorithm minimizes the intra-cluster distance [Hamerly and 
Elkan 2002]. The K-means algorithm starts with K centroids (initial values for the 
centroids are randomly selected or derived from a priori information). Then, each 
pattern in the data set is assigned to the closest cluster (i.e. closest centroid). Finally, 
the centroids are recalculated according to the associated patterns. This process is 
repeated until convergence is achieved.  

The membership and weight functions for K-means are defined as 
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Hence, K-means has a hard membership function. Furthermore, K-means has a 
constant weight function, thus, all patterns have equal importance [Hamerly and 
Elkan 2002]. 

 

The K-means algorithm has the following main advantages [Turi 2001]: 
• it is very easy to implement, and 
• its time complexity is O(Np) making it suitable for very large data sets. 

However, the K-means algorithm has the following drawbacks [Davies 1997]: 
• the algorithm is data-dependent,  
• it is a greedy algorithm that depends on the initial conditions, which may 

cause the algorithm to converge to suboptimal solutions, and 
• the user needs to specify the number of clusters in advance. 

The K-medoids algorithm is similar to K-means with one major difference, 
namely, the centroids are taken from the data itself [Hamerly 2003]. The objective of 
K-medoids is to find the most centrally located patterns within the clusters [Halkidi et 
al. 2001]. These patterns are called medoids. Finding a single medoid requires 

)O( 2
pN . Hence, K-medoids is not suitable for moderately large data sets.  

3.2.2. The Fuzzy C-means Algorithm 

A fuzzy version of K-means, called Fuzzy C-means (FCM) (sometimes called 
fuzzy K-means), was proposed by Bezdek [1980; 1981]. FCM is based on a fuzzy 
extension of the least-square error criterion. The advantage of FCM over K-means is 
that FCM assigns each pattern to each cluster with some degree of membership (i.e. 
fuzzy clustering). This is more suitable for real applications where there are some 
overlaps between the clusters in the data set. The objective function that the FCM 
optimizes is  
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where q is the fuzziness exponent, with q ≥ 1. Increasing the value of q will make the 
algorithm more fuzzy; uk,p is the membership value for the pth pattern in the kth cluster 
satisfying the following constraints: 

• 0≥pk,u ,  p = 1,…, Np and k = 1,…, K 

• 1
1

=∑
=

K

k
pk,u ,  p = 1,…, Np 

The membership and weight functions for FCM are defined as [Hamerly and 
Elkan 2002] 
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1)( =pzw            (11) 

Hence, FCM has a soft membership function and a constant weight function. In 
general, FCM performs better than K-means [Hamerly 2003] and it is less affected by 
the presence of uncertainty in the data [Liew et al. 2000]. However, as in K-means it 
requires the user to specify the number of clusters in the data set. In addition, it may 
converge to local optima [Jain et al. 1999]. 

 Krishnapuram and Keller [1993; 1996] proposed a possibilistic clustering 
algorithm, called possibilistic C-means. Possibilistic clustering is similar to fuzzy 
clustering; the main difference is that in possibilistic clustering the membership 
values may not sum to one [Turi 2001]. Possibilistic C-means works well in the 
presence of noise in the data set. However, it has several drawbacks, namely [Turi 
2001], 

• it is likely to generate coincident clusters, 
• it requires the user to specify the number of clusters in advance,  
• it converges to local optima, and  
• it depends on initial conditions.    

3.2.3. The Gaussian Expectation-Maximization Algorithm 

Another popular clustering algorithm is the Expectation-Maximization (EM) 
algorithm [McLachlan and Krishnan 1997; Rendner and Walker 1984; Bishop 1995]. 
EM is used for parameter estimation in the presence of some unknown data [Hamerly 
2003]. EM partitions the data set into clusters by determining a mixture of Gaussians 
fitting the data set. Each Gaussian has a mean and covariance matrix [Alldrin et al. 
2003]. The objective function that the EM optimizes as defined by Hamerly and Elkan 
[2002] is 
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where )( kp |p mz  is the probability of pz  given that it is generated by a Gaussian 
distribution with centroid km , and )( kp m is the prior probability of centroid km . 

The membership and weight functions for EM are defined as [Hamerly and Elkan 
2002] 
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Hence, EM has a soft membership function and a constant weight function. The 
algorithm starts with an initial estimate of the parameters. Then, an expectation step is 
applied where the known data values are used to compute the expected values of the 
unknown data [Hamerly 2003]. This is followed by a maximization step where the 
known and expected values of the data are used to generate a new estimate of the 
parameters. The expectation and maximization steps are repeated until convergence. 



 Results from Veenman et al. [2002] and Hamerly [2003] showed that K-
means performs comparably to EM. Furthermore, Aldrin et al. [2003] stated that EM 
fails on high-dimensional data sets due to numerical precision problems. They also 
observed that Gaussians often collapsed to delta functions [Alldrin et al. 2003]. In 
addition, EM depends on the initial estimate of the parameters [Hamerly 2003; Turi 
2001] and it requires the user to specify the number of clusters in advance. Moreover, 
EM assumes that the density of each cluster is Gaussian which may not always be true 
[Ng et al. 2001]. 

3.2.4. The K-harmonic Means Algorithm 

Recently, Zhang and colleagues [1999; 2000] proposed a novel algorithm called 
K-harmonic means (KHM), with promising results. In KHM, the harmonic mean of 
the distance of each cluster center to every pattern is computed. The cluster centroids 
are then updated accordingly. The objective function that the KHM optimizes is 
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where α is a user-specified parameter, typically α ≥ 2.   

The membership and weight functions for KHM are [Hamerly and Elkan 2002] 
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Hence, KHM has a soft membership function and a varying weight function. KHM 
assigns higher weights for patterns that are far from all the centroids to help the 
centroids in covering the data [Hamerly and Elkan 2002]. 

Contrary to K-means, KHM is less sensitive to initial conditions and does not 
have the problem of collapsing Gaussians exhibited by EM [Alldrin et al. 2003]. 
Experiments conducted by Zhang et al. [1999], Zhang [2000] and Hamerly and Elkan 
[2002] showed that KHM outperformed K-means, FCM (according to Hamerly and 
Elkan [2002]) and EM.  

3.2.5. Hybrid 2 

Hamerly and Elkan [2002] proposed a variation of KHM, called Hybrid 2 (H2), 
which uses the soft membership function of KHM (i.e. Eq. (16)) and the constant 
weight function of K-means (i.e. Eq. (8)). Hamerly and Elkan [2002] showed that H2 
outperformed K-means, FCM and EM. However, KHM, in general, performed 
slightly better than H2.  



K-means, FCM, EM, KHM and H2 are linear time algorithms (i.e. their time 
complexity is O(Np)) making them suitable for very large data sets. According to 
Hamerly [2003], FCM, KHM and H2 - all use soft membership functions - are the 
best available clustering algorithms. 

3.3. Non-iterative Partitional Algorithms 

Another category of unsupervised partitional algorithms includes the non-iterative 
algorithms. The most widely used non-iterative algorithm is MacQueen's K-means 
algorithm [MacQueen 1967]. This algorithm works in two phases: the first phase 
finds the centroids of the clusters, and the second clusters the patterns. Competitive 
Learning (CL) updates the centroids sequentially by moving the closest centroid 
toward the pattern being classified [Scheunders 1997]. These algorithms suffer the 
drawback of being dependent on the order in which the data points are presented. To 
overcome this problem, data points are presented in a random order [Davies 1997]. In 
general, iterative algorithms are more effective than non-iterative algorithms, since 
they are less dependent on the order in which data points are presented. 

3.4. Other Clustering Techniques 

Another type of clustering algorithms includes the Nearest Neighbor clustering 
algorithm proposed by Lu and Fu [1978]. For each unclassified pattern, the algorithm 
finds the nearest classified pattern whose distance from the unclassified pattern is less 
than a pre-specified threshold. The unclassified pattern is then assigned to the cluster 
of the classified pattern. This process is repeated until all the patterns become 
classified or no further assignments can occur [Jain et al. 1999]. 

Recently, a new type of clustering algorithms called spectral clustering algorithms 
[Ng et al. 2001; Bach and Jordan 2003] has been proposed by computer vision 
researchers and graph theorists. Spectral clustering is based on spectral graph theory 
[Chung 1997] where a graph representing the data (the graph is analogous to a matrix 
of the distance between the patterns in the data set) is searched by the spectral 
clustering algorithm for globally optimal cuts [Hamerly 2003]. One major advantage 
of spectral clustering is that it can generate arbitrary-shaped clusters. However, 
spectral clustering suffers from two major drawbacks [Hamerly 2003]: 

• It is computationally expensive (its time complexity is )O( 23
pdp NNN + ). 

Hence, they are not suitable for moderately large data sets. 
• It requires the user to specify a kernel width parameter which has a 

profound effect on the result of the spectral clustering algorithm. Choosing 
a good value for this parameter is usually difficult.  

The mean shift algorithm [Comaniciu and Meer 2002] also automatically finds the 
number of clusters in a data set and can work with arbitrary shaped clusters. The mean 
shift algorithm starts with a number of kernel estimators in the input space. These 
estimators are then repeatedly moved towards areas of higher density. When all the 
kernels reached stability, all the kernels that are near to each other are grouped 
together. The data is then segmented based on where each kernel started. 

The mean shift algorithm has the following problems, [Hamerly 2003]: 
• it has to find a way to group kernels and patterns, and 



• as in spectral clustering, the mean shift algorithm requires the user to 
specify a kernel width parameter which has a profound effect on the result 
of the algorithm. 

4. Clustering Validation Indices 
The cluster validation problem is defined as the problem of determining the 

number of clusters in a data set [Langan et al. 1998]. The main objective of cluster 
validation is to evaluate clustering results in order to find the best partitiong of a data 
set [Halkidi et al. 2001]. Hence, cluster validity approaches are used to quantitatively 
evaluate the result of a clustering algorithm [Halkidi et al. 2001].  These approaches 
have representative indices, called validity indices. The traditional approach to 
determine the "optimum" number of clusters is to run the algorithm repetitively using 
different input values and to select the partitioning of data resulting in the best validity 
measure [Halkidi and Vazirgiannis 2001]. 

 Two criteria that have been widely considered sufficient in measuring the 
quality of data partitioning, are [Halkidi et al. 2001] 

• Compactness: patterns in one cluster should be similar to each other and 
different from patterns in other clusters. The variance of patterns in a 
cluster gives an indication of compactness. 

• Separation: clusters should be well-separated from each other. The 
Euclidean distance between cluster centroids gives an indication of cluster 
separation. 

There are several validity indices; a thorough survey of validity indices can be 
found in Halkidi et al. [2001]. In the following, some representative indices are 
discussed. 

Dunn [1974] proposed a well known cluster validity index that identifies compact 
and well separated clusters. The main goal of Dunn's index is to maximize inter-
cluster distances (i.e. separation) while minimizing intra-cluster distances (i.e. 
increase compactness). The Dunn index is defined as 
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where ),(dist kkk CC is the dissimilarity function between two clusters Ck and Ckk 
defined as 
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where d(u, w) is the Euclidean distance between u and v; diam(C) is the diameter of a 
cluster, defined as 
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An "optimal" value of K is the one that maximizes the Dunn's index. Dunn's index 
suffers from the following problems [Halkidi et al. 2001]: 

• it is computationally expensive, and 
• it is sensitive to the presence of noise.  

Several Dunn-like indices were proposed in Pal and Biswas [1997] to reduce the 
sensitivity to the presence of noise. 

Another well known index, proposed by Davies and Bouldin [1979], minimizes 
the average similarity between each cluster and the one most similar to it. The Davies 
and Bouldin index is defined as 
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An "optimal" value of K is the one that minimizes the DB index. 

 Recently, Turi [2001] proposed an index incorporating a multiplier function (to 
penalize the selection of a small number of clusters) to the ratio between intra-cluster 
and inter-cluster distances, with some promising results. The index is defined as 

inter
intra)1)1,2(N( ×+×= cV            (20) 

where c is a user specified parameter and N(2,1) is a Gaussian distribution with mean 
2 and standard deviation of 1. The "intra" term is the average of all the distances 
between each data point and its cluster centroid, defined as 
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This term is used to measure the compactness of the clusters. The "inter" term is the 
minimum distance between the cluster centroids, defined as 

.K,...,kkkK,...,kmin kkk 1  and  11  },{inter 2 +=−=∀−= mm  

This term is used to measure the separation of the clusters. An "optimal" value of K is 
the one that minimizes the V index. 

 According to Turi [2001], this index performed better than both Dunn's index 
and the index of Davies and Bouldin on the tested cases. 

Two recent validity indices are S_Dbw [Halkidi and Vazirgiannis 2001] and 
CDbw [Halkidi and Vazirgiannis 2002]. S_Dbw measures the compactness of a data 
set by the cluster variance, whereas separation is measured by the density between 
clusters. The S_Dbw index is defined as 

)()( KDens_bwKscatS_Dbw +=            (21) 



The first term is the average scattering of the clusters which is a measure of 
compactness of the clusters, defined as 
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where )( kCσ is the variance of cluster Ck and )(Zσ is the variance of data set  Z; ||z|| 
is defined as ||z|| = (zTz)1/2, where z is a vector. 

The second term in Eq. (21) evaluates the density of the area between the two 
clusters in relation to the density of the two clusters. Thus, the second term is a 
measure of the separation of the clusters, defined as 
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where bk,kk is the middle point of the line segment defined by mk and mkk. The term 
density(b) is defined as 
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where nk,kk is the total number of patterns in clusters Ck and Ckk (i.e. nk,kk= nk + nkk). 
The function f(z,b) is defined as 
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An "optimal" value of K is the one that minimizes the S_Dbw index. Halkidi and 
Vazirgiannis [2001] showed that, in tested cases, S_Dbw successfully found the 
"optimal" number of clusters whereas other well-known indices often failed to do so. 
However, S_Dbw does not work properly for arbitrary shaped clusters.  

To address this problem, Halkidi and Vazirgiannis [2002] proposed a multi-
representative validity index, CDbw, in which each cluster is represented by a user-
specified number of points, instead of one representative as is done in S_Dbw. 
Furthermore, CDbw uses intra-cluster density to measure the compactness of a data 
set, and uses the density between clusters to measure their separation. 

More recently, Veenman et al. [2002; 2003] proposed a validity index that 
minimizes the intra-cluster variability while constraining the intra-cluster variability 
of the union of the two clusters. The sum of squared error is used to minimize the 



intra-cluster variability while a minimum variance for the union of two clusters is 
used to implement the joint intra-cluster variability. The index is defined as 
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where nk is the number of patterns in cluster Ck and 
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where 2
maxσ  is a user-specified parameter. This parameter has a profound effect on the 

final result. 

The above validity indices are suitable for hard clustering. Validity indices have 
been developed for fuzzy clustering. The interested reader is referred to Halkidi et al. 
[2001] for more information. 

These are also several information-theoretic criteria to determine the number of 
clusters in a data set such as Akaike's information criterion (AIC) [Akaike 1974], 
minimum description length (MDL) [Rissanen 1978], Merhav-Gutman-Ziv (MGZ) 
[Merhav 1989]. These criteria are based on likelihood and they differ in the penalty 
term they use to penalize large number of clusters. According to Langan et al. [1998], 
MGZ requires the user to specify a priori value for a parameter that has a profound 
effect on the resultant number of clusters. Furthermore, the penalty terms of AIC and 
MDL are generally useless due to the fact that the associated log likelihood function 
generally dominates the penalty terms in both AIC and MDL. To address this issue, 
Langan et al. [1998] proposed a cluster validation criterion that has no penalty term 
and applied it to the image segmentation problem with promising results.   

5. Determining the Number of Clusters 
Most clustering algorithms require the number of clusters to be specified in 

advance [Lee and Antonsson 2000; Hamerly and Elkan 2003]. Finding the "optimum" 
number of clusters in a data set is usually a challenge since it requires a priori 
knowledge, and/or ground truth about the data, which is not always available. The 
problem of finding the optimum number of clusters in a data set has been the subject 
of several research efforts [Halkidi et al. 2001; Theodoridis and Koutroubas 1999], 
however, despite the amount of research in this area, the outcome is still 
unsatisfactory [Rosenberger and Chehdi 2000]. In the literature, many approaches to 
dynamically find the number of clusters in a data set were proposed. In this section, 
several dynamic clustering approaches are presented and discussed. 

ISODATA (Iterative Self-Organizing Data Analysis Technique), proposed by Ball 
and Hall [1967], is an enhancement of the K-means algorithm (K-means is sometimes 
referred to as basic ISODATA [Turi 2001]). ISODATA is an iterative procedure that 



assigns each pattern to its closest centroids (as in K-means). However, ISODATA has 
the ability to merge two clusters if the distance between their centroids is below a 
user-specified threshold. Furthermore, ISODATA can split elongated clusters into two 
clusters based on another user-specified threshold. Hence, a major advantage of 
ISODATA compared to K-means is the ability to determine the number of clusters in 
a data set. However, ISODATA requires the user to specify the values of several 
parameters (e.g. the merging and splitting thresholds). These parameters have a 
profound effect on the performance of ISODATA making the result subjective [Turi 
2001]. 

Dynamic Optimal Cluster-seek (DYNOC) [Tou 1979] is a dynamic clustering 
algorithm which is similar to ISODATA. DYNOC maximizes the ratio of the 
minimum inter-cluster distance to the maximum intra-cluster distance. This is done by 
an iterative procedure with the added capability of splitting and merging. However, as 
in ISODATA, DYNOC requires the user to specify a value for a parameter that 
determines whether splitting is needed [Turi 2001]. 

Snob [Wallace 1984; Wallace and Dowe 1994] uses various methods to assign 
objects to clusters in an intelligent manner [Turi 2001]. After each assignment, a 
means of model selection called the Wallace Information Measure (also known as the 
Minimum Message Length (MML)) [Wallace and Boulton 1968; Oliver and Hand 
1994] is calculated and based on this calculation the assignment is accepted or 
rejected. Snob can split/merge and move points between clusters, thereby allowing it 
to determine the number of clusters in a data set. 

Oliver et al. [1996] compares MML with different model selection methods for 
determining the number of clusters, K, in a data set. All the compared methods use a 
two step procedure where the EM algorithm is first used to estimate the parameters of 
each cluster for a range of K values. Then, the value of K that optimizes a tested 
model selection criterion (e.g. MML) is chosen. According to Oliver et al. [1996], 
MML performs better than the other examined model selection criteria when applied 
to the tested data sets. However, model selection methods based on the EM algorithm 
depend on the initial conditions and suffer from the local maximum of log-likelihood 
[Dai and Ma 2004].  

Bischof et al. [1999] proposed an algorithm based on K-means which uses MDL 
(conceptually similar to MML). The algorithm starts with a large value for K and 
proceeds to remove centroids when this removal results in a reduction of the 
description length. K-means is used between the steps that reduce K. 

Roberts et al. [1998] proposed a Bayesian-based approach to determine the 
number of clusters in a data set. The proposed approach was compared against other 
optimal model selection methods (including MML and MDL) on synthetic and real 
data sets. According to Roberts et al. [1998], The Bayesian methods, MDL and MML 
outperformed other heuristic techniques (e.g. the method proposed by Gath and Geva 
[1989] – discussed later in this section). 

Recently, Figueiredo and Jain [2002] proposed an approach that integrates 
estimation and model selection in one algorithm. According to Figueiredo and Jain 
[2002], the proposed approach can determine the number of clusters in a data set and 
compared to the EM algorithm, it is less sensitive to initialization. Dai and Ma [2004] 
proposed a Bayesian-based approach to automatically determine the number of 
clusters in a data set with promising results. Furthermore, Zivkovic and van der 



Heijden [2004] proposed a recursive method that estimates the parameters of the 
mixture and determines the number of clusters in the data set. However, the proposed 
approach requires the user to specify the value of a parameter, which has a profound 
effect on the resultant number of clusters.     

Modified Linde-Buzo-Gray (MLBG), proposed by Rosenberger and Chehdi 
[2000], improves K-means by automatically finding the number of clusters in data set 
by using intermediate results. MLBG is an iterative procedure that starts with K 
clusters. In each iteration, a cluster, Ck, maximizing an intra-cluster distance measure 
is chosen for splitting. Two centroids are generated from the splitting process. The 
first centroid, m1, is initialized to the centroid of the original cluster, Ck. The second 
cluster centroid, m2, is chosen to be the pattern in Ck which is the most distant from 
m1. K-means is then applied on the new K+1 centroids. The new set of centroids is 
accepted if it satisfies an evaluation criterion based on a dispersion measure. This 
process is repeated until no valid partition of the data can be obtained. One of the 
main problems with MLBG is that it requires the user to specify the values of four 
parameters, which have a profound effect on the resultant number of clusters. 

Pelleg and Moore [2000] proposed another K-means based algorithm, called X-
means that uses model selection. X-means starts by setting the number of clusters, K, 
to be the minimum number of clusters in the data set (e.g. K = 1). Then, K-means is 
applied on the K clusters. This is followed by a splitting process based on the 
Bayesian Information Criterion (BIC) [Kass and Wasserman 1995] defined as 
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where )( CZ |l̂  is the log-likelihood of the data set Z according to model C. If the 
splitting process improves the BIC score the resulting split is accepted, otherwise it is 
rejected. Other scoring functions can also be used. 

These two steps are repeated until a user-specified upper bound of K is reached. 
X-means searches over the range of values of K and reports the value with the best 
BIC score. 

Recently, Huang [2002] proposed SYNERACT as an alternative approach to 
ISODATA. SYNERACT combines K-means with hierarchical descending approaches 
to overcome the drawbacks of K-means mentioned previously. Three concepts used 
by SYNERACT are:  

• a hyperplane to split up a cluster into two smaller clusters and compute 
their centroids, 

• iterative clustering to assign pixels into available clusters, and  
• a binary tree to store clusters generated from the splitting process.  

According to Huang [2002], SYNERACT is faster than and almost as accurate as 
ISODATA. Furthermore, it does not require the number of clusters and initial location 
of centroids to be specified in advance. However, SYNERACT requires the user to 
specify the values of two parameters that affect the splitting process. 



 Veenman et al. [2002] proposed a partitional clustering algorithm that finds 
the number of clusters in a data set by minimizing the clustering validity index 
defined in Eq. (22). This algorithm starts by initializing the number of clusters equal 
to the number of patterns in the data set. Then, iteratively, the clusters are split or 
merged according to a series of tests based on the validity index. According to 
Veenman et al. [2002], the proposed approach performed better than both K-means 
and EM algorithms. However, the approach suffers from the following drawbacks, 
namely 

• it is computationally expensive, and 
• it requires the user to specify a parameter for the validity index (already 

discussed in Section 4) which has a significant effect on the final results 
(although the authors provide a method to help the user in finding a good 
value for this parameter).   

More recently, Hamerly and Elkan [2003] proposed another approach based on K-
means, called G-means. G-means starts with a small value for K, and with each 
iteration splits up the clusters whose data do not fit a Gaussian distribution. Between 
each round of splitting, K-means is applied to the entire data set in order to refine the 
current solution. According to Hamerly and Elkan [2003], G-means works better than 
X-means, however, it works only for data having spherical and/or elliptical clusters. 
G-means is not designed to work for arbitrary-shaped clusters [Hamerly 2003]. 

 Gath and Geva [1989] proposed an unsupervised fuzzy clustering algorithm 
based on a combination of FCM and fuzzy maximum likelihood estimation. The 
algorithm starts by initializing K to a user-specified lower bound of the number of 
clusters in the data set (e.g. K = 1). A modified FCM (that uses an unsupervised 
learning process to initialize the K centroids) is first applied to cluster the data.  Using 
the resulting centroids, a fuzzy maximum likelihood estimation algorithm is then 
applied. The fuzzy maximum likelihood estimation algorithm uses an "exponential" 
distance measure based on maximum likelihood estimation [Bezdek 1981] instead of 
the Euclidean distance measure, because the exponential distance measure is more 
suitable for hyper-ellipsoidal clusters. The quality of the resulting clusters is then 
evaluated using a clustering validity index that is mainly based on a hyper-volume 
criterion which measures the compactness of a cluster. K is then incremented and the 
algorithm is repeated until a user-specified upper bound of K is reached. The value of 
K resulting in the best value of the validity index is considered to be the "optimal" 
number of clusters in the data set. Gath and Geva [1989] stated that their algorithm 
works well in cases of large variability of cluster shapes. However, the algorithm 
becomes more sensitive to local optima as the complexity increases. Furthermore, 
because of the exponential function, floating point overflows may occur [Su 2002]. 

 Lorette et al. [2000] proposed an algorithm based on fuzzy clustering to 
dynamically determine the number of clusters in a data set. A new objective function 
was proposed for this purpose, defined as 
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where q is the fuzziness exponent, uk,p is the membership value for the pth pattern in 
the kth cluster, β is a parameter that decreases as the run progresses, and pk is the a 
priori probability of cluster Ck defined as 
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The first term of Eq. (24) is the objective function of FCM which is minimized when 
each cluster consists of one pattern. The second term is an entropy term that is 
minimized when all the patterns are assigned to one cluster. Lorette et al. [2000] use 
this objective function to derive new update equations for the membership and 
centroid parameters. 

 The algorithm starts with a large number of clusters. Then, the membership 
values and centroids are updated using the new update equations. This is followed by 
applying Eq. (25) to update the a priori probabilities. If ε<kp  then cluster k is 
discarded; ε is a user-specified parameter. This procedure is repeated until 
convergence. The drawback of this approach is that it requires the parameter ε to be 
specified in advance. The performance of the algorithm is sensitive to the value of ε. 

 Similarly, Boujemaa [2000] proposed an algorithm, based on a generalization 
of the competitive agglomeration clustering algorithm introduced by Frigui and 
Krishnapuram [1997]. 

 The fuzzy algorithms discussed above modify the objective function of FCM. 
In general, these approaches are sensitive to initialization and other parameters [Frigui 
and Krishnapuram 1999]. Frigui and Krishnapuram [1999] proposed a robust 
competitive clustering algorithm based on the process of competitive agglomeration. 
The algorithm starts with a large number of small clusters. Then, during the execution 
of the algorithm, adjacent clusters compete for patterns. Clusters losing the 
competition will eventually disappear [Frigui and Krishnapuram 1999]. However, this 
algorithm also requires the user to specify a parameter that has a significant effect on 
the generated result. 

6. Clustering using Self-Organizing Maps 
Kohonen's Self Organizing Maps (SOM) [Kohonen 1995] can be used to 

automatically find the number of clusters in a data set. The objective of SOM is to 
find regularities in a data set without any external supervision [Pandya and Macy 
1996]. SOM is a single-layered unsupervised artificial neural network where input 
patterns are associated with output nodes via weights that are iteratively modified 
until a stopping criterion is met [Jain et al. 1999]. SOM combines competitive 
learning (in which different nodes in the Kohonen network compete to be the winner 
when an input pattern is presented) with a topological structuring of nodes, such that 
adjacent nodes tend to have similar weight vectors (this is done via lateral feedback) 
[Mehrotra et al. 1997; Pandya and Macy 1996]. A general pseudo-code of SOM 
[Pandya and Macy 1996] is shown in Figure 1. 



 

Let )(tη  be the learning rate parameter and )(tw∆ be the neighborhood function  
Randomly initialize the weight vectors, wk(0) 
Initialize the learning rate (0)η  and the neighborhood function (0)w∆  
Repeat 
   For each input pattern zp do 
      Select the node whose weight vector is closest (in terms of Euclidean distance) to   
      zp as the winning node 

 
      Use competitive learning to train the weight vectors such that all the nodes within  
      the neighborhood of the winning node are moved toward zp: 
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   Endloop 
   Linearly decrease )(tη and reduce )(tw∆  
Until some convergence criteria are satisfied 

Figure 1. General pseudo-code for SOM 

In Figure 1, )(tη  starts relatively large (e.g. close to 1) then linearly decreases 
until it reaches a small user-specified value. The neighborhood function )(tw∆  
defines the neighborhood size surrounding the winning node. A large value of  )(tw∆  
is used at the beginning of the training. This value is then reduced as the training 
progresses in order to get sharper clusters [Pandya and Macy 1996]. A typical 
neighborhood arrangement is the rectangular lattice shown in Figure 2 [Pandya and 
Macy 1996]. 
 

 

Figure 2. Rectangular Lattice arrangement of neighborhoods 

SOM suffers from the following drawbacks [Jain et al. 1999]: 



• It depends on the initial conditions. 
• Its performance is affected by the learning rate parameter and the 

neighborhood function. 
• It works well with hyper-spherical clusters only. 
• It uses a fixed number of output nodes. 
• It depends on the order in which the data points are presented. To 

overcome this problem, the choice of data points can be randomized 
during each iteration [Pandya and Macy 1996]. 

7. Clustering using Stochastic Algorithms 
Simulated annealing [Van Laarhoven and Aarts 1987] has been used for clustering 

[Klein and Dubes 1989]. In general, a simulated annealing based clustering algorithm 
works as shown in Figure 3 [Jain et al. 1999]. 

 
An initial partition P0 of the data set is randomly chosen  
Repeat 
   A neighbor of P0 is chosen  
   If the new partition is better than P0 then  
      move to the new partition  
   else 
      move to the new partition with a probability that decreases as the algorithm  
      progresses. 
Until a stopping criterion is satisfied 

Figure 3. General simulated annealing based clustering algorithm 

One problem with simulated annealing is that it is very slow in finding an optimal 
solution [Jain et al. 1999].  

Tabu search [Glover 1989; Glover 1990] has also been used for hard clustering 
[Al-Sultan 1995] and fuzzy clustering [Delgado et al. 1997] with encouraging results. 
A hybrid approach combining both K-means and tabu search that performs better than 
both K-means and tabu search was proposed by Frnti et al. [1998]. Recently, Chu and 
Roddick [2003] proposed a hybrid approach combining both tabu search and 
simulated annealing that outperforms the hybrid proposed by Frnti et al. [1998]. 
However, the performance of simulated annealing and tabu search depends on the 
selection of several control parameters [Jain et al. 1999]. 

Most clustering approaches discussed so far perform local search to find a solution 
to a clustering problem. Evolutionary algorithms [Michalewicz and Fogel 2000] 
which perform global search have also been used for clustering [Jain et al. 1999]. 
Raghavan and Birchand [1979] used GAs [Goldberg 1989] to minimize the squared 
error of a clustering solution. In this approach, each chromosome represents a 
partition of Np patterns into K clusters. Hence, the size of each chromosome is Np. 
This representation has a major drawback in that it increases the search space by a 
factor of K!. The crossover operator may also result in inferior offspring [Jain et al. 
1999]. 



 Babu and Murty [1993] proposed a hybrid approach combining K-means and 
GAs that performed better than the GA. In this approach, a GA is only used to feed K-
means with good initial centroids [Jain et al. 1999]. 

 Recently, Maulik and Bandyopadhyay [2000] proposed a GA-based clustering 
where each chromosome represents K centroids. Hence, a floating point 
representation is used. The fitness function is defined as the inverse of the objective 
function of K-means (refer to Eq. (6)). The GA-based clustering algorithm is 
summarized in Figure 4. 

 According to Maulik and Bandyopadhyay [2000], this approach outperformed 
K-means on the tested cases. One drawback of this approach is that it requires the user 
to specify the number of clusters in advance. 

 
1. Initialize each chromosome to contain K randomly chosen centroids from the 

data set 
2. For t = 1 to tmax 
(a) For each chromosome i 

(i) Assign each pattern to the cluster with the closest centroid 
(ii)  Recalculate the K cluster centroids of chromosome i as the means of their 

patterns 
(iii) Calculate the fitness of chromosome i 

 
(b) Apply roulette wheel selection 
(c) Apply single point crossover with probability pc 
(d) Apply mutation with probability pm. The mutation operator is defined as 

xxx )( γ+±= r  

            where (0,1)~ Ur and γ  is a user-specified parameter such that γ ∈(0,1) 

Figure 4. General pseudo-code for GA-based clustering algorithm 

Lee and Antonsson [2000] used an evolution strategy (ES) [Bäck et al. 1991] to 
dynamically cluster a data set. The proposed ES implemented variable length 
individuals to search for both the centroids and the number of clusters. Each 
individual represents a set of centroids. The length of each individual is randomly 
chosen from a user-specified range of cluster numbers. The centroids of each 
individual are then randomly initialized. Mutation is applied to the individuals by 
adding/subtracting a Gaussian random variable with zero mean and unit standard 
deviation. Two point crossover is also used as a "length changing operator". A 
(10+60) ES selection is used where 10 is the number of parents and 60 is the number 
of offspring generated in each generation. The best ten individuals from the set of 
parents and offspring are used for the next generation. A modification of the mean 
square error is used as the fitness function, defined as 

∑ ∑
= ∈∀

+=
K

k C
kp

kp

dKJ
1

ES )(1
z

m,z                       (26) 

The modification occurs by multiplying the mean square error by a constant 
corresponding to the square root of the number of clusters. This constant is used to 



penalize a large value of K. According to Lee and Antonsson [2000], the results are 
promising. However, the proposed algorithm needs to be compared with other 
dynamic clustering approaches and its performance needs to be investigated as the 
dimension increases. 

In general, evolutionary approaches have several advantages, namely [Jain et al. 
1999]: 

• they are global search approaches, 
• they are suitable for parallel processing, and 
• they can work with a discontinuous criterion function.  

However, evolutionary approaches generally suffer from the following drawbacks 
[Jain et al. 1999]: 

• they require the user to specify the values of a set of parameters (e.g. 
population size, pc, pm, etc.) for each specific problem, and  

• the execution time of EAs is significantly higher than the execution time of 
other traditional clustering algorithms (e.g. K-means and FCM), especially 
when applied to large data sets. 

More recently, Omran et al. [2002; 2005] proposed a Particle Swarm 
Optimization (PSO) [Kennedy and Eberhart 1995]-based clustering algorithm where 
each particle represents K centroids. Hence, a floating point representation is used. 
According to Omran et al. [2005], this approach generally outperformed K-means, 
FCM, KHM, H2 and GA on the tested cases. One drawback of this approach is that it 
requires the user to specify the number of clusters in advance. 

To address this drawback, a dynamic clustering approach based on PSO, was 
proposed by Omran [2005]. The proposed approach automatically determines the 
"optimum" number of clusters and simultaneously clusters the data set with minimal 
user interference. The algorithm starts by partitioning the data set into a relatively 
large number of clusters to reduce the effects of initial conditions. Using binary PSO 
the "best" number of clusters is selected. The centroids of the chosen clusters are then 
refined via the K-means clustering algorithm. The experiments conducted by Omran 
[2005] show that the proposed approach generally found the "optimum" number of 
clusters on the tested cases. 

Recently, Differential Evolution [Storn and Price 1995] was applied to the 
clustering problem by Paterlini and Krink [2004] and Omran et al. [2005] with 
promising results. 

8. Summary 
This paper presented an overview of the different clustering methods. First the 

data clustering problem was defined. This was followed by defining the terms used in 
this paper. In addition, a brief overview of the different similarity measures was 
given. Clustering techniques were then discussed. A presentation of different 
clustering validation techniques was then shown. Methods that automatically 
determine the number of clusters in a data set was then presented. Finally, an 
overview of clustering using SOMs and stochastic techniques was presented.  
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