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Abstract— Data clustering is the process of identifying natural
groupings or clusters within multidimensional data based on some
similarity measure. Clustering is a fundamental process in many
different disciplines. Hence, researchers from different fields are
actively working on the clustering problem. This paper provides an
overview of the different representative clustering methods. In
addition, several clustering validations indices are shown. Furthermore,
approaches to automatically determine the number of clusters are
presented. Finally, application of different heuristic approaches to the
clustering problem is also investigated.

Keywords: Clustering; Clustering Validation; Hard Clustering; Fuzzy
Clustering; Unsupervised Learning

1. Introduction

Data clustering is the process of identifying natural groupings or clusters within
multidimensional data based on some similarity measure (e.g. Euclidean distance)
[Jain et al. 1999; Jain et al. 2000]. It is an important process in pattern recognition and
machine learning [Hamerly and Elkan 2002]. Furthermore, data clustering is a central
process in Artificial Intelligence (Al) [Hamerly 2003]. Clustering algorithms are used
in many applications, such as image segmentation [Coleman and Andrews 1979; Jain
and Dubes 1988; Turi 2001], vector and color image quantization [Kaukoranta et al.
1998; Baek et al. 1998; Xiang 1997], data mining [Judd et al. 1998], compression
[Abbas and Fahmy 1994], machine learning [Carpineto and Romano 1996], etc. A
cluster is usually identified by a cluster center (or centroid) [Lee and Antonsson
2000]. Data clustering is a difficult problem in unsupervised pattern recognition as the
clusters in data may have different shapes and sizes [Jain et al. 2000].

Due to the prohibitive amount of research conducted in the area of clustering, a
survey paper investigating the state-of-the-art clustering methods is generally
welcomed. Hence, the purpose of this paper is to provide such an overview of
representative clustering methods. However, trying to address all the clustering



methods on one paper is not possible. Therefore, this paper tries to provide the reader
with an overview of a set of representative clustering methods.

The reminder of this paper is organized as follows: Section 2 provides a
background material. Section 3 surveys different clustering techniques. Several
clustering validation techniques are presented in Section 4. Methods for determining
the number of clusters in a data set are given in Section 5. Section 6 provides a brief
introduction to the use of Self-Organizing Maps for clustering. Clustering using
stochastic techniques is investigated in Section 7. Finally, Section 8 concludes the

paper.

2. Backgrounds

This section defines the terms used throughout the paper and it provides the reader
with the necessary background material to follow-up the discussion in the paper.

2.1. Definitions

The following terms are used in this paper:

e A pattern (or feature vector), z, is a single object or data point used by the
clustering algorithm [Jain et al. 1999].

e A feature (or attribute) is an individual component of a pattern [Jain et al.
1999].

e A cluster is a set of similar patterns, and patterns from different clusters
are not similar [Everitt 1974].

e Hard (or Crisp) clustering algorithms assign each pattern to one and only
one cluster.

e Fuzzy clustering algorithms assign each pattern to each cluster with some
degree of membership.

e A distance measure is a metric used to evaluate the similarity of patterns
[Jain et al. 1999].

The clustering problem can be formally defined as follows (Veenman et al. 2003):

Given a data set Z ={z,,2,,...,2,,...,5y | Where g, is a pattern in the N-

dimensional feature space, and N, is the number of patterns in Z, then the clustering
of Z is the partitioning of Z into K clusters {C), C»,...,Ck} satisfying the following
conditions:

e Each pattern should be assigned to a cluster, i.e.
Ui, C,. =Z
e FEach cluster has at least one pattern assigned to it, i.e.
C,#¢, k=1...K
e Each pattern is assigned to one and only one cluster (in case of hard
clustering only), i.e.
C,NC, =¢ wherek # kk



2.2. Similarity Measures

As previously mentioned, clustering is the process of identifying natural
groupings or clusters within multidimensional data based on some similarity measure.
Hence, similarity measures are fundamental components in most clustering algorithms
[Jain et al. 1999].

The most popular way to evaluate a similarity measure is the use of distance
measures. The most widely used distance measure is the Euclidean distance defined
as

2, -2, (1)
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Euclidean distance is a special case (when « = 2) of the Minkowski metric [Jain ef al.
1999] defined as

Ny
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When o = 1, the measure is referred to as the Manhattan distance [Hamerly 2003].

Clustering data of high dimensionality using the Minkowski metric is usually not
efficient because the distance between the patterns increases with increase in
dimensionality. Hence, the concepts of near and far become weaker [Hamerly 2003].
Furthermore, for the Minkowski metric, the largest-scaled feature tends to dominate
the other features. This can be solved by normalizing the features to a common range
[Jain et al. 1999]. One way to do this is by using the cosine distance (or vector dot
product) which is the sum of the product of each component from two vectors defined
as

Ny
Zzu,.fzw,f
<z,.%, >=f——0 3)
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where <z, ,z, > € [-1,1].

u’

The cosine distance is actually not a distance but rather a similarity metric. In
other words, the cosine distance measures the difference in the angle between two
vectors not the difference in the magnitude between two vectors. The cosine distance
is suitable for clustering data of high dimensionality [Hamerly 2003].

Another distance measure is the Mahalanobis distance defined as
dy(z,2,)=(z,-2,)2"(z, - 2,)" (4)

where X is the covariance matrix of the patterns. The Mahalanobis distance gives
different features different weights based on their variances and pairwise linear
correlations. Thus, this metric implicitly assumes that the densities of the classes are
multivariate Gaussian [Jain ef al. 1999].



3.  Clustering Techniques

Most clustering algorithms are based on two popular techniques known as
hierarchical and partitional clustering [Frigui and Krishnapuram 1999; Leung et al.
2000]. In the following, an overview of both techniques is presented with an elaborate
discussion of popular hierarchical and partitional clustering algorithms.

3.1. Hierarchical Clustering Techniques

Algorithms in this category generate a cluster tree (or dendrogram) by using
heuristic splitting or merging techniques [Hamerly 2003]. A cluster tree is defined as
"a tree showing a sequence of clustering with each clustering being a partition of the
data set" [Leung et al. 2000]. Algorithms that use splitting to generate the cluster tree
are called divisive. On the other hand, the more popular algorithms that use merging
to generate the cluster tree are called agglomerative. Divisive hierarchical algorithms
start with all the patterns assigned to a single cluster. Then, splitting is applied to a
cluster in each stage until each cluster consists of one pattern. Contrary to divisive
hierarchical algorithms, agglomerative hierarchical algorithms start with each pattern
assigned to one cluster. Then, the two most similar clusters are merged together. This
step is repeated until all the patterns are assigned to a single cluster [Turi 2001].
Several agglomerative hierarchical algorithms were proposed in the literature which
differ in the way that the two most similar clusters are calculated. The two most
popular agglomerative hierarchical algorithms are the single link [Sneath and Sokal
1973] and complete link [ Anderberg 1973] algorithms. Single link algorithms merge
the clusters whose distance between their closest patterns is the smallest. Complete
link algorithms, on the other hand, merge the clusters whose distance between their
most distant patterns is the smallest [Turi 2001]. In general, complete link algorithms
generate compact clusters while single link algorithms generate elongated clusters.
Thus, complete link algorithms are generally more useful than single link algorithms
[Jain ef al. 1999]. Another less popular agglomerative hierarchical algorithm is the
centroid method [Anderberg 1973]. The centroid algorithm merges the clusters whose
distance between their centroids is the smallest. One disadvantage of the centroid
algorithm is that the characteristic of a very small cluster is lost when merged with a
very large cluster [Turi 2001]. More details about traditional hierarchical clustering
techniques can be found in Everitt [1974].

Recently, a hierarchical clustering approach to simulate the human visual
system by modeling the blurring effect of lateral retinal interconnections based on
scale space theory has been proposed by Leung et al. [2000]. The following paragraph
provides the reader with a good idea about this approach as described by Leung et al.
[2000]:

"In this approach, a data set is considered as an image with each light
point located at a datum position. As we blur this image, smaller light
blobs merge into larger ones until the whole image becomes one light
blob at a low level of resolution. By identifying each blob with a
cluster, the blurring process generates a family of clustering along the
hierarchy."

According to Leung et al. [2000], this approach has several advantages, including:

e it iS not sensitive to initialization,



e it is robust in the presence of noise in the data set, and
e it generates clustering that is similar to that perceived by human eyes.
In general, hierarchical clustering techniques have the following advantages
[Frigui and Krishnapuram 1999]:
e the number of clusters need not to be specified a priori, and
e they are independent of the initial conditions.

However, hierarchical clustering techniques generally suffer from the following
drawbacks:

e They are computationally expensive (time complexity is O(N ; logN,)
and space complexity is O(Nﬁ) [Turi 2001]). Hence, they are not suitable
for very large data sets.

e They are static, i.e. patterns assigned to a cluster cannot move to another
cluster.

e They may fail to separate overlapping clusters due to a lack of information
about the global shape or size of the clusters.

3.2. Partitional Clustering Techniques

Partitional clustering algorithms divide the data set into a specified number of
clusters. These algorithms try to minimize certain criteria (e.g. a square error
function) and can therefore be treated as optimization problems. However, these
optimization problems are generally NP-hard and combinatorial [Leung et al. 2000].
The advantages of hierarchical algorithms are the disadvantages of the partitional
algorithms and vice versa. Because of their advantages, partitional clustering
techniques are more popular than hierarchical techniques in pattern recognition [Jain
et al. 2000], hence, this paper concentrates on partitional techniques.

Partitional clustering algorithms are generally iterative algorithms that
converge to local optima [Hamerly and Elkan 2002]. Employing the general form of
iterative clustering used by Hamerly and Elkan [2002], the steps of an iterative
clustering algorithm are:

1. Randomly initialize the K cluster centroids
2. Repeat
o For each pattern, z,, in the data set do
Compute its membership u(m, |z,) to each centroid my and its
weight w(z,)
endloop

o Recalculate the K cluster centroids, using

> u(m, |z,)w(z,)z,
mk . vz

AN &

until a stopping criterion is satisfied.



In the above algorithm, u(m, |z,) is the membership function which quantifies
the membership of pattern z, to cluster k. The membership function, u(m, |z,), must
satisfy the following constraints:

o u(m, |zp) >0, p=1,..,N,andk=1,...,K

K
O zu(mklzp)zla p:l’---aNP
k=1

Crisp clustering algorithms use a hard membership function (i.e.
u(m, |z,) €{0,1}), while fuzzy clustering algorithms use a soft member function (i.e.

u(m,; | z,) €[0,1]) [Hamerly and Elkan 2002].

The weight function, w(z,), in Eq. (5) defines how much influence pattern z, has
in recomputing the centroids in the next iteration, where w(z,) >0 [Hamerly and

Elkan 2002]. The weight function was proposed by Zhang [2000].
Different stopping criteria can be used in an iterative clustering algorithm, for
example:
e stop when the change in centroid values are smaller than a user-specified
value,
e stop when the quantization error is small enough, or

e stop when a maximum number of iterations has been exceeded.

In the following, popular iterative clustering algorithms are described by defining
the membership and weight functions in Eq. (5).

3.2.1. The K-means Algorithm

The most widely used partitional algorithm is the iterative K-means approach
[Forgy 1965]. The objective function that the K-means optimizes is

JK—means :Z Zdz(zp’mk) (6)

k=1 Vz,eCy

Hence, the K-means algorithm minimizes the intra-cluster distance [Hamerly and
Elkan 2002]. The K-means algorithm starts with K centroids (initial values for the
centroids are randomly selected or derived from a priori information). Then, each
pattern in the data set is assigned to the closest cluster (i.e. closest centroid). Finally,
the centroids are recalculated according to the associated patterns. This process is
repeated until convergence is achieved.

The membership and weight functions for K-means are defined as
1 ifd*(z,,m,)=argmin, {d*(z,,m,)} -

0 otherwise

u(m, Izp)Z{

w(z,)=1 (3)



Hence, K-means has a hard membership function. Furthermore, K-means has a
constant weight function, thus, all patterns have equal importance [Hamerly and
Elkan 2002].

The K-means algorithm has the following main advantages [Turi 2001]:
e it is very easy to implement, and

e its time complexity is O(V,) making it suitable for very large data sets.

However, the K-means algorithm has the following drawbacks [Davies 1997]:
e the algorithm is data-dependent,

e itis a greedy algorithm that depends on the initial conditions, which may
cause the algorithm to converge to suboptimal solutions, and

e the user needs to specify the number of clusters in advance.

The K-medoids algorithm is similar to K-means with one major difference,
namely, the centroids are taken from the data itself [Hamerly 2003]. The objective of
K-medoids is to find the most centrally located patterns within the clusters [Halkidi ef
al. 2001]. These patterns are called medoids. Finding a single medoid requires

O(N 12,) . Hence, K-medoids is not suitable for moderately large data sets.

3.2.2. The Fuzzy C-means Algorithm

A fuzzy version of K-means, called Fuzzy C-means (FCM) (sometimes called
fuzzy K-means), was proposed by Bezdek [1980; 1981]. FCM is based on a fuzzy
extension of the least-square error criterion. The advantage of FCM over K-means is
that FCM assigns each pattern to each cluster with some degree of membership (i.e.
fuzzy clustering). This is more suitable for real applications where there are some
overlaps between the clusters in the data set. The objective function that the FCM
optimizes is

&l

ul d*(z,,m,) 9)

K N
JFCM
i

1 p=1

where ¢ is the fuzziness exponent, with ¢ > 1. Increasing the value of g will make the
algorithm more fuzzy; uy, is the membership value for the p™ pattern in the ™ cluster
satisfying the following constraints:

* u,20,p=1..,N, andk=1,.... K

K
° Zuk’p =1, p=1,..,N,
k=1

The membership and weight functions for FCM are defined as [Hamerly and
Elkan 2002]

-2/(g-1)
p M H

(10)

u(mk |zp) = K

-2/(q-1)
ZHZP Ll H
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W(zp):l (11)

Hence, FCM has a soft membership function and a constant weight function. In
general, FCM performs better than K-means [Hamerly 2003] and it is less affected by
the presence of uncertainty in the data [Liew et al. 2000]. However, as in K-means it
requires the user to specify the number of clusters in the data set. In addition, it may
converge to local optima [Jain et al. 1999].

Krishnapuram and Keller [1993; 1996] proposed a possibilistic clustering
algorithm, called possibilistic C-means. Possibilistic clustering is similar to fuzzy
clustering; the main difference is that in possibilistic clustering the membership
values may not sum to one [Turi 2001]. Possibilistic C-means works well in the
presence of noise in the data set. However, it has several drawbacks, namely [Turi
2001],

it is likely to generate coincident clusters,

e it requires the user to specify the number of clusters in advance,
e it converges to local optima, and

e it depends on initial conditions.

3.2.3. The Gaussian Expectation-Maximization Algorithm

Another popular clustering algorithm is the Expectation-Maximization (EM)
algorithm [McLachlan and Krishnan 1997; Rendner and Walker 1984; Bishop 1995].
EM is used for parameter estimation in the presence of some unknown data [Hamerly
2003]. EM partitions the data set into clusters by determining a mixture of Gaussians
fitting the data set. Each Gaussian has a mean and covariance matrix [Alldrin ef al.
2003]. The objective function that the EM optimizes as defined by Hamerly and Elkan
[2002] is

Np K

Jem :_Zlog(zp(zp |m,) p(m,)) (12)
p=1 k=1

where p(z, [m,) is the probability of z, given that it is generated by a Gaussian

distribution with centroid m, , and p(m ) is the prior probability of centroid m, .

The membership and weight functions for EM are defined as [Hamerly and Elkan
2002]

i )= p(z, |m;)p(m,) (13)
r(z,)

w(zp) =1 (14)

Hence, EM has a soft membership function and a constant weight function. The
algorithm starts with an initial estimate of the parameters. Then, an expectation step is
applied where the known data values are used to compute the expected values of the
unknown data [Hamerly 2003]. This is followed by a maximization step where the
known and expected values of the data are used to generate a new estimate of the
parameters. The expectation and maximization steps are repeated until convergence.



Results from Veenman et al. [2002] and Hamerly [2003] showed that K-
means performs comparably to EM. Furthermore, Aldrin ef al. [2003] stated that EM
fails on high-dimensional data sets due to numerical precision problems. They also
observed that Gaussians often collapsed to delta functions [Alldrin ef al. 2003]. In
addition, EM depends on the initial estimate of the parameters [Hamerly 2003; Turi
2001] and it requires the user to specify the number of clusters in advance. Moreover,

EM assumes that the density of each cluster is Gaussian which may not always be true
[Ng et al. 2001].

3.2.4. The K-harmonic Means Algorithm

Recently, Zhang and colleagues [1999; 2000] proposed a novel algorithm called
K-harmonic means (KHM), with promising results. In KHM, the harmonic mean of
the distance of each cluster center to every pattern is computed. The cluster centroids
are then updated accordingly. The objective function that the KHM optimizes is

N,

KHM Z K
M

-

-

(15)

where « is a user-specified parameter, typically > 2.

The membership and weight functions for KHM are [Hamerly and Elkan 2002]
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Hence, KHM has a soft membership function and a varying weight function. KHM
assigns higher weights for patterns that are far from all the centroids to help the
centroids in covering the data [Hamerly and Elkan 2002].

Contrary to K-means, KHM is less sensitive to initial conditions and does not
have the problem of collapsing Gaussians exhibited by EM [Alldrin ef al. 2003].
Experiments conducted by Zhang et al. [1999], Zhang [2000] and Hamerly and Elkan
[2002] showed that KHM outperformed K-means, FCM (according to Hamerly and
Elkan [2002]) and EM.

3.2.5. Hybrid 2

Hamerly and Elkan [2002] proposed a variation of KHM, called Hybrid 2 (H2),
which uses the soft membership function of KHM (i.e. Eq. (16)) and the constant
weight function of K-means (i.e. Eq. (8)). Hamerly and Elkan [2002] showed that H2
outperformed K-means, FCM and EM. However, KHM, in general, performed
slightly better than H2.



K-means, FCM, EM, KHM and H2 are linear time algorithms (i.e. their time
complexity is O(N,)) making them suitable for very large data sets. According to
Hamerly [2003], FCM, KHM and H2 - all use soft membership functions - are the
best available clustering algorithms.

3.3.  Non-iterative Partitional Algorithms

Another category of unsupervised partitional algorithms includes the non-iterative
algorithms. The most widely used non-iterative algorithm is MacQueen's K-means
algorithm [MacQueen 1967]. This algorithm works in two phases: the first phase
finds the centroids of the clusters, and the second clusters the patterns. Competitive
Learning (CL) updates the centroids sequentially by moving the closest centroid
toward the pattern being classified [Scheunders 1997]. These algorithms suffer the
drawback of being dependent on the order in which the data points are presented. To
overcome this problem, data points are presented in a random order [Davies 1997]. In
general, iterative algorithms are more effective than non-iterative algorithms, since
they are less dependent on the order in which data points are presented.

3.4. Other Clustering Techniques

Another type of clustering algorithms includes the Nearest Neighbor clustering
algorithm proposed by Lu and Fu [1978]. For each unclassified pattern, the algorithm
finds the nearest classified pattern whose distance from the unclassified pattern is less
than a pre-specified threshold. The unclassified pattern is then assigned to the cluster
of the classified pattern. This process is repeated until all the patterns become
classified or no further assignments can occur [Jain ef al. 1999].

Recently, a new type of clustering algorithms called spectral clustering algorithms
[Ng et al. 2001; Bach and Jordan 2003] has been proposed by computer vision
researchers and graph theorists. Spectral clustering is based on spectral graph theory
[Chung 1997] where a graph representing the data (the graph is analogous to a matrix
of the distance between the patterns in the data set) is searched by the spectral
clustering algorithm for globally optimal cuts [Hamerly 2003]. One major advantage
of spectral clustering is that it can generate arbitrary-shaped clusters. However,
spectral clustering suffers from two major drawbacks [Hamerly 2003]:

e Itis computationally expensive (its time complexity is O(N,+ N, N})).
Hence, they are not suitable for moderately large data sets.
e [t requires the user to specify a kernel width parameter which has a

profound effect on the result of the spectral clustering algorithm. Choosing
a good value for this parameter is usually difficult.

The mean shift algorithm [Comaniciu and Meer 2002] also automatically finds the
number of clusters in a data set and can work with arbitrary shaped clusters. The mean
shift algorithm starts with a number of kernel estimators in the input space. These
estimators are then repeatedly moved towards areas of higher density. When all the
kernels reached stability, all the kernels that are near to each other are grouped
together. The data is then segmented based on where each kernel started.

The mean shift algorithm has the following problems, [Hamerly 2003]:

e it has to find a way to group kernels and patterns, and



e as in spectral clustering, the mean shift algorithm requires the user to
specify a kernel width parameter which has a profound effect on the result
of the algorithm.

4. Clustering Validation Indices

The cluster validation problem is defined as the problem of determining the
number of clusters in a data set [Langan ef al. 1998]. The main objective of cluster
validation is to evaluate clustering results in order to find the best partitiong of a data
set [Halkidi ef al. 2001]. Hence, cluster validity approaches are used to quantitatively
evaluate the result of a clustering algorithm [Halkidi ez al. 2001]. These approaches
have representative indices, called validity indices. The traditional approach to
determine the "optimum" number of clusters is to run the algorithm repetitively using
different input values and to select the partitioning of data resulting in the best validity
measure [Halkidi and Vazirgiannis 2001].

Two criteria that have been widely considered sufficient in measuring the
quality of data partitioning, are [Halkidi et al. 2001]

o Compactness: patterns in one cluster should be similar to each other and
different from patterns in other clusters. The variance of patterns in a
cluster gives an indication of compactness.

e Separation: clusters should be well-separated from each other. The
Euclidean distance between cluster centroids gives an indication of cluster
separation.

There are several validity indices; a thorough survey of validity indices can be
found in Halkidi et al. [2001]. In the following, some representative indices are
discussed.

Dunn [1974] proposed a well known cluster validity index that identifies compact
and well separated clusters. The main goal of Dunn's index is to maximize inter-
cluster distances (i.e. separation) while minimizing intra-cluster distances (i.e.
increase compactness). The Dunn index is defined as

dist(C ,C
D = min min ( K kk) (18)

max. diam(C )

where dist(C,,C,, )is the dissimilarity function between two clusters Cy and Cy
defined as

dist(C,,C, )= min d(uw),

ueCy ,weCy,

where d(u, w) is the Euclidean distance between u and v; diam(C) is the diameter of a
cluster, defined as



diam(C ) = max d(u,w)

An "optimal" value of K is the one that maximizes the Dunn's index. Dunn's index
suffers from the following problems [Halkidi ez a/. 2001]:

e it is computationally expensive, and

e it is sensitive to the presence of noise.

Several Dunn-like indices were proposed in Pal and Biswas [1997] to reduce the
sensitivity to the presence of noise.

Another well known index, proposed by Davies and Bouldin [1979], minimizes
the average similarity between each cluster and the one most similar to it. The Davies
and Bouldin index is defined as

1 i [dmm(ck>+diam<ckk>j (19)
K = ¢kk‘WK diSt(Ck , Ckk )

An "optimal" value of K is the one that minimizes the DB index.

Recently, Turi [2001] proposed an index incorporating a multiplier function (to
penalize the selection of a small number of clusters) to the ratio between intra-cluster
and inter-cluster distances, with some promising results. The index is defined as

intra

V =(cxN(@2,)+1)x (20)

inter

where c is a user specified parameter and N(2,1) is a Gaussian distribution with mean
2 and standard deviation of 1. The "intra" term is the average of all the distances
between each data point and its cluster centroid, defined as

intra = —Z Z”u mk”

p k=1 YueCy

This term is used to measure the compactness of the clusters. The "inter" term is the
minimum distance between the cluster centroids, defined as

inter = min{|m, —m, |}, Vk=1..,K-1and kk=k+1,...K

This term is used to measure the separation of the clusters. An "optimal" value of K is
the one that minimizes the V index.

According to Turi [2001], this index performed better than both Dunn's index
and the index of Davies and Bouldin on the tested cases.

Two recent validity indices are S _Dbw [Halkidi and Vazirgiannis 2001] and
CDbw [Halkidi and Vazirgiannis 2002]. S Dbw measures the compactness of a data
set by the cluster variance, whereas separation is measured by the density between
clusters. The S Dbw index is defined as

S Dbw = scat(K) + Dens_bw(K) (21)



The first term is the average scattering of the clusters which is a measure of
compactness of the clusters, defined as

scat(K) = Yo (€ o 2]

where o(C),) 1s the variance of cluster C; and o(Z) is the variance of data set Z; ||z]|
is defined as ||z]] = (z'z)"?, where z is a vector.

The second term in Eq. (21) evaluates the density of the area between the two
clusters in relation to the density of the two clusters. Thus, the second term is a
measure of the separation of the clusters, defined as

Dens bw(K) = S i > densityBuu)
- - K(K-D1T o max{densily(Ck ),densily(Ckk)}

k#k k

where by i is the middle point of the line segment defined by m; and my;. The term
density(b) is defined as

Mg ik

density(b) = f(z,.b)

li=1

where ny i 1s the total number of patterns in clusters Ci and Cix (1.€. 1= 1k + niz).
The function f{z,b) is defined as

0 if d(z,b) >0
1 otherwise

f(z,b)={

where

1 K
o= |2l

An "optimal" value of K is the one that minimizes the S _Dbw index. Halkidi and
Vazirgiannis [2001] showed that, in tested cases, S _Dbw successfully found the
"optimal" number of clusters whereas other well-known indices often failed to do so.
However, S Dbw does not work properly for arbitrary shaped clusters.

To address this problem, Halkidi and Vazirgiannis [2002] proposed a multi-
representative validity index, CDbw, in which each cluster is represented by a user-
specified number of points, instead of one representative as is done in S _Dbw.
Furthermore, CDbw uses intra-cluster density to measure the compactness of a data
set, and uses the density between clusters to measure their separation.

More recently, Veenman et al. [2002; 2003] proposed a validity index that
minimizes the intra-cluster variability while constraining the intra-cluster variability
of the union of the two clusters. The sum of squared error is used to minimize the



intra-cluster variability while a minimum variance for the union of two clusters is
used to implement the joint intra-cluster variability. The index is defined as

K
IV =min) nVar(C,) (22)

k=1

where 7y is the number of patterns in cluster C; and

2
2, ~m|

Var(C,) :L Z
n

k zpeCk

such that

Var(C, vC,)>0o’,., VC,,C, k# kk

max 2

where o is a user-specified parameter. This parameter has a profound effect on the

max

final result.

The above validity indices are suitable for hard clustering. Validity indices have
been developed for fuzzy clustering. The interested reader is referred to Halkidi et al.
[2001] for more information.

These are also several information-theoretic criteria to determine the number of
clusters in a data set such as Akaike's information criterion (AIC) [Akaike 1974],
minimum description length (MDL) [Rissanen 1978], Merhav-Gutman-Ziv (MGZ)
[Merhav 1989]. These criteria are based on likelihood and they differ in the penalty
term they use to penalize large number of clusters. According to Langan et al. [1998],
MGZ requires the user to specify a priori value for a parameter that has a profound
effect on the resultant number of clusters. Furthermore, the penalty terms of AIC and
MDL are generally useless due to the fact that the associated log likelihood function
generally dominates the penalty terms in both AIC and MDL. To address this issue,
Langan et al. [1998] proposed a cluster validation criterion that has no penalty term
and applied it to the image segmentation problem with promising results.

5. Determining the Number of Clusters

Most clustering algorithms require the number of clusters to be specified in
advance [Lee and Antonsson 2000; Hamerly and Elkan 2003]. Finding the "optimum"
number of clusters in a data set is usually a challenge since it requires a priori
knowledge, and/or ground truth about the data, which is not always available. The
problem of finding the optimum number of clusters in a data set has been the subject
of several research efforts [Halkidi et al. 2001; Theodoridis and Koutroubas 1999],
however, despite the amount of research in this area, the outcome is still
unsatisfactory [Rosenberger and Chehdi 2000]. In the literature, many approaches to
dynamically find the number of clusters in a data set were proposed. In this section,
several dynamic clustering approaches are presented and discussed.

ISODATA (Iterative Self-Organizing Data Analysis Technique), proposed by Ball
and Hall [1967], is an enhancement of the K-means algorithm (K-means is sometimes
referred to as basic ISODATA [Turi 2001]). ISODATA is an iterative procedure that



assigns each pattern to its closest centroids (as in K-means). However, ISODATA has
the ability to merge two clusters if the distance between their centroids is below a
user-specified threshold. Furthermore, ISODATA can split elongated clusters into two
clusters based on another user-specified threshold. Hence, a major advantage of
ISODATA compared to K-means is the ability to determine the number of clusters in
a data set. However, ISODATA requires the user to specify the values of several
parameters (e.g. the merging and splitting thresholds). These parameters have a
profound effect on the performance of ISODATA making the result subjective [Turi
2001].

Dynamic Optimal Cluster-seek (DYNOC) [Tou 1979] is a dynamic clustering
algorithm which is similar to ISODATA. DYNOC maximizes the ratio of the
minimum inter-cluster distance to the maximum intra-cluster distance. This is done by
an iterative procedure with the added capability of splitting and merging. However, as
in ISODATA, DYNOC requires the user to specify a value for a parameter that
determines whether splitting is needed [Turi 2001].

Snob [Wallace 1984; Wallace and Dowe 1994] uses various methods to assign
objects to clusters in an intelligent manner [Turi 2001]. After each assignment, a
means of model selection called the Wallace Information Measure (also known as the
Minimum Message Length (MML)) [Wallace and Boulton 1968; Oliver and Hand
1994] is calculated and based on this calculation the assignment is accepted or
rejected. Snob can split/merge and move points between clusters, thereby allowing it
to determine the number of clusters in a data set.

Oliver et al. [1996] compares MML with different model selection methods for
determining the number of clusters, K, in a data set. All the compared methods use a
two step procedure where the EM algorithm is first used to estimate the parameters of
each cluster for a range of K values. Then, the value of K that optimizes a tested
model selection criterion (e.g. MML) is chosen. According to Oliver ef al. [1996],
MML performs better than the other examined model selection criteria when applied
to the tested data sets. However, model selection methods based on the EM algorithm
depend on the initial conditions and suffer from the local maximum of log-likelihood
[Dai and Ma 2004].

Bischof et al. [1999] proposed an algorithm based on K-means which uses MDL
(conceptually similar to MML). The algorithm starts with a large value for K and
proceeds to remove centroids when this removal results in a reduction of the
description length. K-means is used between the steps that reduce K.

Roberts et al. [1998] proposed a Bayesian-based approach to determine the
number of clusters in a data set. The proposed approach was compared against other
optimal model selection methods (including MML and MDL) on synthetic and real
data sets. According to Roberts ef al. [1998], The Bayesian methods, MDL and MML
outperformed other heuristic techniques (e.g. the method proposed by Gath and Geva
[1989] — discussed later in this section).

Recently, Figueiredo and Jain [2002] proposed an approach that integrates
estimation and model selection in one algorithm. According to Figueiredo and Jain
[2002], the proposed approach can determine the number of clusters in a data set and
compared to the EM algorithm, it is less sensitive to initialization. Dai and Ma [2004]
proposed a Bayesian-based approach to automatically determine the number of
clusters in a data set with promising results. Furthermore, Zivkovic and van der



Heijden [2004] proposed a recursive method that estimates the parameters of the
mixture and determines the number of clusters in the data set. However, the proposed
approach requires the user to specify the value of a parameter, which has a profound
effect on the resultant number of clusters.

Modified Linde-Buzo-Gray (MLBG), proposed by Rosenberger and Chehdi
[2000], improves K-means by automatically finding the number of clusters in data set
by using intermediate results. MLBG is an iterative procedure that starts with K
clusters. In each iteration, a cluster, C;, maximizing an intra-cluster distance measure
is chosen for splitting. Two centroids are generated from the splitting process. The
first centroid, m, is initialized to the centroid of the original cluster, C;. The second
cluster centroid, m,, is chosen to be the pattern in C; which is the most distant from
m;. K-means is then applied on the new K+1 centroids. The new set of centroids is
accepted if it satisfies an evaluation criterion based on a dispersion measure. This
process is repeated until no valid partition of the data can be obtained. One of the
main problems with MLBG is that it requires the user to specify the values of four
parameters, which have a profound effect on the resultant number of clusters.

Pelleg and Moore [2000] proposed another K-means based algorithm, called X-
means that uses model selection. X-means starts by setting the number of clusters, K,
to be the minimum number of clusters in the data set (e.g. K = 1). Then, K-means is
applied on the K clusters. This is followed by a splitting process based on the
Bayesian Information Criterion (BIC) [Kass and Wasserman 1995] defined as

KN+

BIC(C|Z)=I(Z|C)- g N (23)

P

where | (Z | C) is the log-likelihood of the data set Z according to model C. If the

splitting process improves the BIC score the resulting split is accepted, otherwise it is
rejected. Other scoring functions can also be used.

These two steps are repeated until a user-specified upper bound of K is reached.
X-means searches over the range of values of K and reports the value with the best
BIC score.

Recently, Huang [2002] proposed SYNERACT as an alternative approach to
ISODATA. SYNERACT combines K-means with hierarchical descending approaches
to overcome the drawbacks of K-means mentioned previously. Three concepts used
by SYNERACT are:

e ahyperplane to split up a cluster into two smaller clusters and compute
their centroids,
e iterative clustering to assign pixels into available clusters, and
e a binary tree to store clusters generated from the splitting process.
According to Huang [2002], SYNERACT is faster than and almost as accurate as
ISODATA. Furthermore, it does not require the number of clusters and initial location

of centroids to be specified in advance. However, SYNERACT requires the user to
specify the values of two parameters that affect the splitting process.



Veenman et al. [2002] proposed a partitional clustering algorithm that finds
the number of clusters in a data set by minimizing the clustering validity index
defined in Eq. (22). This algorithm starts by initializing the number of clusters equal
to the number of patterns in the data set. Then, iteratively, the clusters are split or
merged according to a series of tests based on the validity index. According to
Veenman et al. [2002], the proposed approach performed better than both K-means
and EM algorithms. However, the approach suffers from the following drawbacks,
namely

e it is computationally expensive, and

e it requires the user to specify a parameter for the validity index (already
discussed in Section 4) which has a significant effect on the final results
(although the authors provide a method to help the user in finding a good
value for this parameter).

More recently, Hamerly and Elkan [2003] proposed another approach based on K-
means, called G-means. G-means starts with a small value for K, and with each
iteration splits up the clusters whose data do not fit a Gaussian distribution. Between
each round of splitting, K-means is applied to the entire data set in order to refine the
current solution. According to Hamerly and Elkan [2003], G-means works better than
X-means, however, it works only for data having spherical and/or elliptical clusters.
G-means is not designed to work for arbitrary-shaped clusters [Hamerly 2003].

Gath and Geva [1989] proposed an unsupervised fuzzy clustering algorithm
based on a combination of FCM and fuzzy maximum likelihood estimation. The
algorithm starts by initializing K to a user-specified lower bound of the number of
clusters in the data set (e.g. K= 1). A modified FCM (that uses an unsupervised
learning process to initialize the K centroids) is first applied to cluster the data. Using
the resulting centroids, a fuzzy maximum likelihood estimation algorithm is then
applied. The fuzzy maximum likelihood estimation algorithm uses an "exponential"
distance measure based on maximum likelihood estimation [Bezdek 1981] instead of
the Euclidean distance measure, because the exponential distance measure is more
suitable for hyper-ellipsoidal clusters. The quality of the resulting clusters is then
evaluated using a clustering validity index that is mainly based on a hyper-volume
criterion which measures the compactness of a cluster. K is then incremented and the
algorithm is repeated until a user-specified upper bound of K is reached. The value of
K resulting in the best value of the validity index is considered to be the "optimal"
number of clusters in the data set. Gath and Geva [1989] stated that their algorithm
works well in cases of large variability of cluster shapes. However, the algorithm
becomes more sensitive to local optima as the complexity increases. Furthermore,
because of the exponential function, floating point overflows may occur [Su 2002].

Lorette et al. [2000] proposed an algorithm based on fuzzy clustering to
dynamically determine the number of clusters in a data set. A new objective function
was proposed for this purpose, defined as

=
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where g is the fuzziness exponent, u;, is the membership value for the p™ pattern in
the k™ cluster, Bis a parameter that decreases as the run progresses, and py is the a
priori probability of cluster Cy defined as
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The first term of Eq. (24) is the objective function of FCM which is minimized when
each cluster consists of one pattern. The second term is an entropy term that is
minimized when all the patterns are assigned to one cluster. Lorette ef al. [2000] use
this objective function to derive new update equations for the membership and
centroid parameters.

The algorithm starts with a large number of clusters. Then, the membership
values and centroids are updated using the new update equations. This is followed by
applying Eq. (25) to update the a priori probabilities. If p, <& then cluster & is

discarded; ¢1s a user-specified parameter. This procedure is repeated until
convergence. The drawback of this approach is that it requires the parameter & to be
specified in advance. The performance of the algorithm is sensitive to the value of &.

Similarly, Boujemaa [2000] proposed an algorithm, based on a generalization
of the competitive agglomeration clustering algorithm introduced by Frigui and
Krishnapuram [1997].

The fuzzy algorithms discussed above modify the objective function of FCM.
In general, these approaches are sensitive to initialization and other parameters [Frigui
and Krishnapuram 1999]. Frigui and Krishnapuram [1999] proposed a robust
competitive clustering algorithm based on the process of competitive agglomeration.
The algorithm starts with a large number of small clusters. Then, during the execution
of the algorithm, adjacent clusters compete for patterns. Clusters losing the
competition will eventually disappear [Frigui and Krishnapuram 1999]. However, this
algorithm also requires the user to specify a parameter that has a significant effect on
the generated result.

6. Clustering using Self-Organizing Maps

Kohonen's Self Organizing Maps (SOM) [Kohonen 1995] can be used to
automatically find the number of clusters in a data set. The objective of SOM is to
find regularities in a data set without any external supervision [Pandya and Macy
1996]. SOM is a single-layered unsupervised artificial neural network where input
patterns are associated with output nodes via weights that are iteratively modified
until a stopping criterion is met [Jain ez al. 1999]. SOM combines competitive
learning (in which different nodes in the Kohonen network compete to be the winner
when an input pattern is presented) with a topological structuring of nodes, such that
adjacent nodes tend to have similar weight vectors (this is done via lateral feedback)
[Mehrotra et al. 1997; Pandya and Macy 1996]. A general pseudo-code of SOM
[Pandya and Macy 1996] is shown in Figure 1.



Let 77(¢) be the learning rate parameter and A (¢) be the neighborhood function
Randomly initialize the weight vectors, wy(0)
Initialize the learning rate 7(0) and the neighborhood function A  (0)

Repeat
For each input pattern z, do
Select the node whose weight vector is closest (in terms of Euclidean distance) to
z, as the winning node

Use competitive learning to train the weight vectors such that all the nodes within
the neighborhood of the winning node are moved toward z),:

w (D+n@)lz, —w (D] kel (@)
w, (1) otherwise

w, (t+1) :{

Endloop
Linearly decrease 77(¢) and reduce A (¥)

Until some convergence criteria are satisfied

Figure 1. General pseudo-code for SOM

In Figure 1, 7(¢) starts relatively large (e.g. close to 1) then linearly decreases
until it reaches a small user-specified value. The neighborhood function A ()
defines the neighborhood size surrounding the winning node. A large value of A (¢)

is used at the beginning of the training. This value is then reduced as the training
progresses in order to get sharper clusters [Pandya and Macy 1996]. A typical
neighborhood arrangement is the rectangular lattice shown in Figure 2 [Pandya and
Macy 1996].
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Figure 2. Rectangular Lattice arrangement of neighborhoods

SOM suffers from the following drawbacks [Jain et al. 1999]:




e It depends on the initial conditions.

e Its performance is affected by the learning rate parameter and the
neighborhood function.

e [t works well with hyper-spherical clusters only.
e It uses a fixed number of output nodes.

e [t depends on the order in which the data points are presented. To
overcome this problem, the choice of data points can be randomized
during each iteration [Pandya and Macy 1996].

7.  Clustering using Stochastic Algorithms
Simulated annealing [Van Laarhoven and Aarts 1987] has been used for clustering

[Klein and Dubes 1989]. In general, a simulated annealing based clustering algorithm
works as shown in Figure 3 [Jain ef al. 1999].

An initial partition Py of the data set is randomly chosen
Repeat
A neighbor of Py is chosen
If the new partition is better than P, then
move to the new partition
else
move to the new partition with a probability that decreases as the algorithm
progresses.
Until a stopping criterion is satisfied

Figure 3. General simulated annealing based clustering algorithm

One problem with simulated annealing is that it is very slow in finding an optimal
solution [Jain ef al. 1999].

Tabu search [Glover 1989; Glover 1990] has also been used for hard clustering
[Al-Sultan 1995] and fuzzy clustering [Delgado et al. 1997] with encouraging results.
A hybrid approach combining both K-means and tabu search that performs better than
both K-means and tabu search was proposed by Frnti ez al. [1998]. Recently, Chu and
Roddick [2003] proposed a hybrid approach combining both tabu search and
simulated annealing that outperforms the hybrid proposed by Frnti et al. [1998].
However, the performance of simulated annealing and tabu search depends on the
selection of several control parameters [Jain et al. 1999].

Most clustering approaches discussed so far perform local search to find a solution
to a clustering problem. Evolutionary algorithms [Michalewicz and Fogel 2000]
which perform global search have also been used for clustering [Jain ez al. 1999].
Raghavan and Birchand [1979] used GAs [Goldberg 1989] to minimize the squared
error of a clustering solution. In this approach, each chromosome represents a
partition of N, patterns into K clusters. Hence, the size of each chromosome is N,,.
This representation has a major drawback in that it increases the search space by a
factor of K!. The crossover operator may also result in inferior offspring [Jain et al.
1999].




Babu and Murty [1993] proposed a hybrid approach combining K-means and
GAs that performed better than the GA. In this approach, a GA is only used to feed K-
means with good initial centroids [Jain et al. 1999].

Recently, Maulik and Bandyopadhyay [2000] proposed a GA-based clustering
where each chromosome represents K centroids. Hence, a floating point
representation is used. The fitness function is defined as the inverse of the objective
function of K-means (refer to Eq. (6)). The GA-based clustering algorithm is
summarized in Figure 4.

According to Maulik and Bandyopadhyay [2000], this approach outperformed
K-means on the tested cases. One drawback of this approach is that it requires the user
to specify the number of clusters in advance.

1. Initialize each chromosome to contain K randomly chosen centroids from the
data set
2. Fort=1 10 tmax
(a) For each chromosome i
(1) Assign each pattern to the cluster with the closest centroid
(i1) Recalculate the K cluster centroids of chromosome i as the means of their
patterns
(ii1) Calculate the fitness of chromosome i

(b) Apply roulette wheel selection

(c) Apply single point crossover with probability p.

(d) Apply mutation with probability p,,. The mutation operator is defined as
x=xt(r+y)x

where » ~ U(0,1)and y is a user-specified parameter such that y €(0,1)

Figure 4. General pseudo-code for GA-based clustering algorithm

Lee and Antonsson [2000] used an evolution strategy (ES) [Béck et al. 1991] to
dynamically cluster a data set. The proposed ES implemented variable length
individuals to search for both the centroids and the number of clusters. Each
individual represents a set of centroids. The length of each individual is randomly
chosen from a user-specified range of cluster numbers. The centroids of each
individual are then randomly initialized. Mutation is applied to the individuals by
adding/subtracting a Gaussian random variable with zero mean and unit standard
deviation. Two point crossover is also used as a "length changing operator". A
(10+60) ES selection is used where 10 is the number of parents and 60 is the number
of offspring generated in each generation. The best ten individuals from the set of
parents and offspring are used for the next generation. A modification of the mean
square error is used as the fitness function, defined as

Jps =VK+ 1§ D d(z,,m,) (26)

k=1 Vz,€C;

The modification occurs by multiplying the mean square error by a constant
corresponding to the square root of the number of clusters. This constant is used to




penalize a large value of K. According to Lee and Antonsson [2000], the results are
promising. However, the proposed algorithm needs to be compared with other
dynamic clustering approaches and its performance needs to be investigated as the
dimension increases.

In general, evolutionary approaches have several advantages, namely [Jain et al.
1999]:

e they are global search approaches,
e they are suitable for parallel processing, and

e they can work with a discontinuous criterion function.

However, evolutionary approaches generally suffer from the following drawbacks
[Jain et al. 1999]:

e they require the user to specify the values of a set of parameters (e.g.
population size, p., pm, etc.) for each specific problem, and

e the execution time of EAs is significantly higher than the execution time of
other traditional clustering algorithms (e.g. K-means and FCM), especially
when applied to large data sets.

More recently, Omran et al. [2002; 2005] proposed a Particle Swarm
Optimization (PSO) [Kennedy and Eberhart 1995]-based clustering algorithm where
each particle represents K centroids. Hence, a floating point representation is used.
According to Omran et al. [2005], this approach generally outperformed K-means,
FCM, KHM, H2 and GA on the tested cases. One drawback of this approach is that it
requires the user to specify the number of clusters in advance.

To address this drawback, a dynamic clustering approach based on PSO, was
proposed by Omran [2005]. The proposed approach automatically determines the
"optimum" number of clusters and simultaneously clusters the data set with minimal
user interference. The algorithm starts by partitioning the data set into a relatively
large number of clusters to reduce the effects of initial conditions. Using binary PSO
the "best" number of clusters is selected. The centroids of the chosen clusters are then
refined via the K-means clustering algorithm. The experiments conducted by Omran
[2005] show that the proposed approach generally found the "optimum" number of
clusters on the tested cases.

Recently, Differential Evolution [Storn and Price 1995] was applied to the
clustering problem by Paterlini and Krink [2004] and Omran et al. [2005] with
promising results.

8.  Summary

This paper presented an overview of the different clustering methods. First the
data clustering problem was defined. This was followed by defining the terms used in
this paper. In addition, a brief overview of the different similarity measures was
given. Clustering techniques were then discussed. A presentation of different
clustering validation techniques was then shown. Methods that automatically
determine the number of clusters in a data set was then presented. Finally, an
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